JSci.maths.polynomials
Class RealPolynomialRing

java.lang.Object
  extended by JSci.maths.polynomials.RealPolynomialRing
All Implemented Interfaces:
Ring, AbelianGroup

public class RealPolynomialRing
extends java.lang.Object
implements Ring


Nested Class Summary
 
Nested classes/interfaces inherited from interface JSci.maths.fields.Ring
Ring.Member
 
Constructor Summary
protected RealPolynomialRing()
          Creates a new instance of PolynomialRing
 
Method Summary
static RealPolynomialRing getInstance()
          Singleton.
 boolean isNegative(AbelianGroup.Member a, AbelianGroup.Member b)
          Returns true if one member is the negative of the other.
 boolean isOne(Ring.Member r)
          Returns true if the member is the unit element.
 boolean isZero(AbelianGroup.Member g)
          Returns true if the member is the identity element of this group.
 Ring.Member one()
          Returns the unit element.
protected static double[] toDouble(Field.Member[] f)
          internal method for safe typecast
protected static MathDouble[] toMathDouble(double[] d)
          internal method for safe typecast
 AbelianGroup.Member zero()
          Returns the identity element.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

RealPolynomialRing

protected RealPolynomialRing()
Creates a new instance of PolynomialRing

Method Detail

getInstance

public static final RealPolynomialRing getInstance()
Singleton.


isNegative

public boolean isNegative(AbelianGroup.Member a,
                          AbelianGroup.Member b)
Returns true if one member is the negative of the other.

Specified by:
isNegative in interface AbelianGroup
Parameters:
a - a group member
b - a group member

isOne

public boolean isOne(Ring.Member r)
Returns true if the member is the unit element.

Specified by:
isOne in interface Ring

isZero

public boolean isZero(AbelianGroup.Member g)
Returns true if the member is the identity element of this group.

Specified by:
isZero in interface AbelianGroup
Parameters:
g - a group member

one

public Ring.Member one()
Returns the unit element.

Specified by:
one in interface Ring

zero

public AbelianGroup.Member zero()
Returns the identity element.

Specified by:
zero in interface AbelianGroup

toDouble

protected static double[] toDouble(Field.Member[] f)
internal method for safe typecast


toMathDouble

protected static MathDouble[] toMathDouble(double[] d)
internal method for safe typecast