JSci.maths.fields
Class ComplexField

java.lang.Object
  extended byJSci.maths.fields.ComplexField
All Implemented Interfaces:
AbelianGroup, Field, Ring

public final class ComplexField
extends java.lang.Object
implements Field

The ComplexField class encapsulates the field of complex numbers.


Nested Class Summary
 
Nested classes inherited from class JSci.maths.fields.Field
Field.Member
 
Field Summary
static Complex HALF
           
static Complex HALF_I
           
static Complex I
           
static Complex MINUS_HALF
           
static Complex MINUS_HALF_I
           
static Complex MINUS_I
           
static Complex MINUS_ONE
           
static Complex MINUS_PI_2
           
static Complex MINUS_PI_2_I
           
static Complex MINUS_SQRT_HALF_I
           
static Complex MINUS_TWO
           
static Complex ONE
           
static Complex PI
           
static Complex PI_2
           
static Complex PI_2_I
           
static Complex PI_I
           
static Complex SQRT_HALF
           
static Complex SQRT_HALF_I
           
static Complex TWO
           
static Complex ZERO
           
 
Method Summary
static ComplexField getInstance()
          Constructs a field of complex numbers.
 boolean isInverse(Field.Member a, Field.Member b)
          Returns true if one complex number is the inverse of the other.
 boolean isNegative(AbelianGroup.Member a, AbelianGroup.Member b)
          Returns true if one complex number is the negative of the other.
 boolean isOne(Ring.Member r)
          Returns true if the complex number is equal to one.
 boolean isZero(AbelianGroup.Member g)
          Returns true if the complex number is equal to zero.
 Ring.Member one()
          Returns the complex number one.
 AbelianGroup.Member zero()
          Returns the complex number zero.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

ZERO

public static final Complex ZERO

I

public static final Complex I

ONE

public static final Complex ONE

MINUS_ONE

public static final Complex MINUS_ONE

MINUS_I

public static final Complex MINUS_I

HALF

public static final Complex HALF

MINUS_HALF

public static final Complex MINUS_HALF

HALF_I

public static final Complex HALF_I

MINUS_HALF_I

public static final Complex MINUS_HALF_I

TWO

public static final Complex TWO

MINUS_TWO

public static final Complex MINUS_TWO

SQRT_HALF

public static final Complex SQRT_HALF

SQRT_HALF_I

public static final Complex SQRT_HALF_I

MINUS_SQRT_HALF_I

public static final Complex MINUS_SQRT_HALF_I

PI

public static final Complex PI

PI_I

public static final Complex PI_I

PI_2

public static final Complex PI_2

MINUS_PI_2

public static final Complex MINUS_PI_2

PI_2_I

public static final Complex PI_2_I

MINUS_PI_2_I

public static final Complex MINUS_PI_2_I
Method Detail

getInstance

public static final ComplexField getInstance()
Constructs a field of complex numbers. Singleton.


zero

public AbelianGroup.Member zero()
Returns the complex number zero.

Specified by:
zero in interface AbelianGroup

isZero

public boolean isZero(AbelianGroup.Member g)
Returns true if the complex number is equal to zero.

Specified by:
isZero in interface AbelianGroup
Parameters:
g - a group member

isNegative

public boolean isNegative(AbelianGroup.Member a,
                          AbelianGroup.Member b)
Returns true if one complex number is the negative of the other.

Specified by:
isNegative in interface AbelianGroup
Parameters:
a - a group member
b - a group member

one

public Ring.Member one()
Returns the complex number one.

Specified by:
one in interface Ring

isOne

public boolean isOne(Ring.Member r)
Returns true if the complex number is equal to one.

Specified by:
isOne in interface Ring

isInverse

public boolean isInverse(Field.Member a,
                         Field.Member b)
Returns true if one complex number is the inverse of the other.

Specified by:
isInverse in interface Field